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Summary: We provide a method for obtaining confidence intervals, point estimates and p-values

for the primary effect size parameter at the end of a two-arm group sequential clinical trial in which

adaptive changes have been implemented along the way. The method is based on applying the

adaptive hypothesis testing procedure of Müller and Schäfer (2001) to a sequence of dual tests derived

from the stage-wise adjusted confidence interval of Tsiatis, Rosner and Mehta (1984). In the non-

adaptive setting this confidence interval is known to provide exact coverage. In the adaptive setting

exact coverage is guaranteed provided the adaptation takes place at the penultimate stage. In general,

however, all that can be claimed theoretically is that the coverage is guaranteed to be conservative.

Nevertheless extensive simulation experiments, supported by an empirical characterization of the

conditional error function, demonstrate convincingly that for all practical purposes the coverage is

exact and the point estimate is median unbiased. No procedure has previously been available for

producing confidence intervals and point estimates with these desirable properties in an adaptive

group sequential setting. The methodology is illustrated by an application to a clinical trial of deep

brain stimulation for Parkinson’s disease.
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1. Introduction

The problem of making mid-course corrections to an on-going clinical trial while preserving

the type I error rate has been widely investigated in recent years. Early proposals by Bauer

and Köhne (1994), and Proschan and Hunsberger (1995) were confined to a two-stage trial.

Further refinements and extensions to the multi-stage setting were developed by, among

others, Fisher (1998), Shen and Fisher (1999), Cui, Hung and Wang (1999), Lehmacher and

Wassmer (1999), Denne (2001), Brannath, Posch and Bauer (2002), and Cheng and Shen

(2004). An important benefit of the methodology is that while the adaptations may depend

on the data observed up to the interim analysis, the precise adaptation rule need not be pre-

specified. This allows investigators to react to unforeseen events in a confirmatory clinical

trial without inflating the type I error.

The topic of so-called adaptive or flexible designs is currently undergoing intensive dis-

cussion within and between members of the PhRMA adaptive working group (Gallo and

Krams, 2006) and various regulatory bodies (Hung, O’Neill, Wang and Lawrence, 2006;

CMP, 2006; Koch, 2006). One reason for this great interest is the concern that far too many

medical compounds proceed all the way to a confirmatory phase III setting and then fail

to demonstrate efficacy, not because the compound is ineffective, but because the trial was

poorly designed on the basis of limited data from small phase II or pilot studies. Flexible

designs offer a way to make appropriate changes to faulty design parameters using data from

the phase III trial itself, while also protecting the type I error rate.

The present paper is concerned with parameter estimation following an adaptive change

to the design parameters of a two-arm, randomized, group sequential clinical trial. Most

previous approaches to this problem have focused exclusively on sample size re-estimation. A

considerably more general approach was suggested by Müller and Schäfer (2001). In addition

to sample size changes their method permits changes to the spending function, the number
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and spacing of interim looks, and many other design elements at one or more interim analysis

time points, while nevertheless preserving the overall type I error rate. Furthermore, if no

adaptations are performed, a decision which can be based on the interim data as well, the

usual group sequential analysis is performed as pre-planned without any modification.

The Müller and Schäfer method is limited to hypothesis testing. The related inference

problem of computing confidence intervals, point estimates and p-values for the treatment

effect, δ, at the end of an adaptive group sequential clinical trial was not addressed by

Müller and Schäfer . This severely limits the applicability of their method to actual clinical

trials. Recently, Mehta, Bauer, Posch and Brannath (2007) applied the Müller and Schäfer

hypothesis testing method to a sequence of dual tests derived from the repeated confidence

intervals (RCI) of Jennison and Turnbull (2000, Chapter 9), and thereby produced confi-

dence intervals and p-values for δ in the adaptive setting. This approach, however, is only

guaranteed to provide conservative coverage of δ. The extent of the conservatism depends

on the choice of spending function for the group sequential design and can be quite severe if

an aggressive spending function is adopted. Additionally the extended RCI method cannot

produce an unbiased point estimate for δ. In contrast, the present paper extends the Müller

and Schäfer hypothesis testing procedure to the sequence of dual tests derived from the stage-

wise adjusted confidence intervals (SWACI) of Tsiatis, Rosner and Mehta (1984). As is well

known, these SWACI’s provide exact coverage in the classical group sequential setting. We

are unable to guarantee that the corresponding SWACI’s in the general adaptive setting will

also provide exact coverage. We can, however, demonstrate theoretically that their coverage

is exact if the adaptive change is made at the penultimate look, and that the coverage is

conservative otherwise. Furthermore, we show through extensive simulation experiments that

the degree of conservatism is negligible. For all practical purposes then, the SWACI method

discussed in this paper provides confidence intervals that have exact coverage and point
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estimates that are median unbiased, up to Monte Carlo accuracy. At present it is the only

method for adaptive group sequential trials with these two properties. If no adaptive change

is made, the classical group sequential SWACI may be adopted. The proposed confidence

interval and the associated hypothesis test are consistent; the null hypothesis H0: δ ≤ δ0 is

rejected by the extended Müller and Schäfer hypothesis test if and only if the corresponding

confidence interval excludes the parameter δ0.

We are aware of some other approaches to parameter estimation following an adaptive

change in sample size. Cheng and Shen (2004) extended the self-designing principle of Shen

and Fisher (1999) to parameter estimation based on the general distribution property of

a pivot function. Lawrence and Hung (2003) used a generalization of the adaptive test

statistic of Cui, Hung and Wang (1999) to produce a consistent point estimate and a

confidence interval with asymptotically correct coverage for adaptive two stage designs. Their

approach does not encompass the group sequential setting in which some α might be spent

to allow for early stopping. More generally, Lehmacher and Wassmer (1999) extended the

repeated confidence interval approach to adaptive designs based on inverse normal weighting.

Their method permits data driven sample size adaptations in a group sequential setting

but does not permit changes to the spending function or the number and spacing of the

interim analyses. Also, their method is derived from the repeated confidence intervals and

therefore has the same drawbacks as the RCI method of Mehta et. al. (2007); it produces

confidence intervals with conservative, rather than exact coverage, and does not extend to

point estimation. The recursive combination tests of Brannath, Posch and Bauer (2002) have

flexibility comparable to that provided by Müller and Schäfer while providing p-values and

confidence intervals in a straightforward manner. They were not, however, intended for group

sequential trials and are difficult to apply in that setting. An overview of estimation methods

for adaptive clinical trials is available in Brannath, König and Bauer (2006) .
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The methods discussed in this paper are directly applicable to one-sided confidence in-

tervals only. In many clinical trials one-sided intervals are of major interest. For example,

non-inferiority trials are by definition one-sided, the goal being to establish that the non-

inferiority margin falls within the appropriate one-sided confidence bound. Furthermore,

although industry sponsored superiority trials are usually designed for two-sided testing at

α = 5%, the regulatory focus is usually on ensuring that the false positive rate favoring the

experimental treatment over the control does not exceed 2.5% and not vice versa. Therefore

the construction of an exact one sided confidence bound consistent with the above one sided

hypothesis test is of interest both to the regulators and to the sponsor. Extension to designs

with futility stopping and to two-sided tests are discussed in Sections 8. Finally, whereas

the Müller and Schäfer hypothesis testing scheme extends in a straightforward manner to

multiple design revisions, the estimation procedures discussed here are only applicable when

there is a single adaptive change in the clinical trial.

2. Review of Adaptive Group Sequential Hypothesis Testing

In the canonical formulation for group sequential tests (see e.g., Jennison and Turnbull,

2000) a total of N normally distributed observations, Xil, i = t or c, l = 1, 2, . . . , N/2, are

generated from the experimental and control arms, respectively, of a randomized clinical

trial. Let µt and µc be the population means of the two arms, let σ2 be the common known

variance, and let δ = µt−µc denote the difference between the two means. The accruing data

are monitored up to K times after observing the cumulative responses for n1, n2, . . . , nK = N

subjects. At the jth look the data are summarized by the Wald statistic Zj = δ̂j

√

Ij where

δ̂j is the maximum likelihood estimate of δ and Ij ≈ [se(δ̂j)]
−2 = nj/(4σ

2) is the estimate of

Fisher information. The sequential Wald statistics {Z1, Z2, . . . ZK} are multivariate normal

with E(Zj) = δ
√

Ij, j = 1, 2, . . . K, and Cov(Zj1 , Zj2) =
√

Ij1/Ij2 for any j1 < j2. Group

sequential stopping boundaries bj, j = 1, . . . , K, for testing the null hypothesis H0: δ ≤ 0
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must satisfy P0{∪K
j=1(Zj ≥ bj)} = α and may be computed either through the spending

function methodology of Lan and DeMets (1983) or via the power family approach of Wang

and Tsiatis (1983).

Müller and Schäfer (2001) have introduced a method that allows us to make adaptive

changes to a group sequential trial. The principle underlying their method is preservation of

the conditional rejection probability at the time that an adaptive change is made. Suppose

that at some look L < K an adaptive change to the future course of the trial is contemplated.

Then one must first compute the conditional rejection probability

ǫ = P0







K
⋃

j=1

(Zj ≥ bj) |Zj = zj, j ≤ L







. (2.1)

where zj denotes the observed value of Zj. One may change various design elements of the

trial such as sample size, spending function, number of additional interim looks and spacing

of the interim looks. Müller and Schäfer have shown that no matter what data dependent

changes one makes at look L, the overall unconditional type I error of the entire trial, with

respect to all possible trial modifications, will be preserved provided the modified portion of

the trial preserves the conditional rejection probability; i.e., provided the null probability of

rejecting H0 at some future look conditional on Zj = zj, j ≤ L, is ǫ.

As in Mehta et al. (2007) we think of the remaining portion of the trial after look L as a

new “secondary” trial in which the test statistic is initialized to zero, new design elements

are incorporated, and the type I error is ǫ. The original design up to and including look L is

called the “primary” trial. The secondary trial will be distinguished from the primary trial by

labeling the maximum number of stages, sample sizes, stopping boundaries and test statistics

for the secondary trial with a superscript. In this notation the secondary trial has a maximum

of K(2) stages, is terminated at look L(2) ≤ K(2) and the observed statistic at the time of

termination is Z
(2)

L(2) = z
(2)

L(2) . The null hypothesis is rejected if and only if z
(2)

L(2) ≥ b
(2)

L(2) where

the boundaries b
(2)
j , j = 1, . . . , K(2), must meet the level condition P0{∪K(2)

j=1 (Z
(2)
j ≥ b

(2)
j )} = ǫ.
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3. Construction of One-Sided Confidence Intervals

A general way to construct a 100 × (1 − α)% confidence set Cα for δ, applicable to both

non-adaptive as well as adaptive group sequential trials, is by performing one sided level-α

tests of Hh: δ ≤ h versus δ > h for all h ∈ (−∞,∞). For adaptive trials these hypothesis

tests are performed by extending the Müller and Schäfer method of testing H0: δ ≤ 0. Then,

only values of h for which the corresponding hypothesis Hh cannot be rejected are included

in Cα. This family of hypothesis tests constitutes the “dual tests” of Cα.

In Mehta et al. (2007) these dual hypothesis tests were performed by shifting the observed

group sequential statistic zj by an amount h
√

Ij, j = 1, 2, . . . L, in the primary trial, and

shifting the observed group sequential statistic z
(2)
j by an amount h

√

I
(2)
j , j = 1, 2, . . . L(2), in

the secondary trial. It was demonstrated that the confidence set Cα so obtained is an interval

of the form [δ,∞) where δ is such that Hh is rejected if and only if h > δ. This interval

specializes to the classical repeated confidence interval (RCI) of Jennison and Turnbull (2000.

Chapter 9) if there is no adaptation of the primary trial. It is therefore considered to be an

extension of the classical RCI.

In the present paper we will construct Cα by performing the hypothesis tests of Hh in a

different manner. The hypothesis tests will be performed so as to produce the stage-wise

adjusted confidence interval of Tsiatis, Rosner and Mehta (1984), extended to the adaptive

setting. As is well known, stage-wise adjusted confidence intervals produce exact coverage in

the non-adaptive setting. Although the same cannot be rigorously demonstrated if there are

trial adaptations we shall show, through simulations, that the extent of the conservatism is,

for all practical purposes, negligible.

3.1 Testing Hh at Level-α in a Trial with no Adaptations

We first define the stage-wise ordering of the sample space of a one-sided K-look group

sequential trial. This ordering was proposed by Armitage (1957), Siegmund (1978) and
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Fairbanks and Madsen (1982). The sample point (j, zj) is considered more extreme than

the sample point (k, zk), in the sense of evidence against the null hypothesis H0: δ ≤ 0, if

either j < k and zj ≥ bj or j = k and zj > zk. We may use this same ordering for testing the

more general hypothesis Hh: δ ≤ h. Suppose the trial is terminated at some look T ≤ K with

observed Wald statistics z1, z2, . . . zT . The one sided p-value for testing Hh: δ ≤ h versus the

alternative that δ > h is defined by the stage-wise ordering to be

p(h) = Ph{
T−1
⋃

j=1

(Zj ≥ bj) ∪ (ZT ≥ zT )} (3.2)

where Ph(.) denotes probability under the assumption that δ = h. A level-α test rejects Hh

if and only if p(h) ≤ α. The confidence set Cα = {h : p(h) > α} consists of all values of h for

which Hh cannot be rejected. The monotonicity of p(h) with increasing h ensures that Cα is

an interval of the form (δ,∞) where δ is the solution to p(δ) = α. This interval, comprising

all the dual tests Hh that cannot be rejected by stage-wise ordered p-values, was proposed

by Tsiatis, Rosner and Mehta (1984). It produces exact 100 × (1 − α)% coverage of δ.

3.2 Testing Hh at Level-α in an Adaptive Trial

Suppose an adaptive change is made at look L < K of the primary trial. Müller and Schäfer

(2001) have shown that the test of H0: δ ≤ 0 will have overall type I error α provided the

secondary trial is designed at level ǫ given by equation (2.1). Now ǫ is the probability of

rejecting H0 were the level-α primary trial to continue without any modification, conditional

on Zj = zj, j ≤ L, and conditional on δ = 0. Therefore it can also be specified as

ǫ = P0{p(0) ≤ α|Zj = zj, j ≤ L} . (3.3)

We may generalize the Müller and Schäfer (2001) principle as follows. In order to test Hh: δ ≤

h at level α when there is an adaptive change, we must run the secondary trial at level

ǫ(h) = Ph{ p(h) ≤ α |Zj = zj, j ≤ L } . (3.4)
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The conditional rejection probabilities ǫ(h) could be computed e.g. via Monte Carlo simula-

tions. The following result, combined with the recursive integration algorithm of Armitage,

McPherson and Rowe (1969), gives another much more efficient method to compute ǫ(h) for

any real valued h. The proof of the following theorem is given in Web Appendix A.

Theorem 3.1: Define α-absorbing constants δ1 ≥ δ2 ≥ · · · ≥ δK−1 to be such that, for

any k = 1, 2, . . . K − 1,

Pδk
{

k
⋃

j=1

(Zj ≥ bj)} = α . (3.5)

Further, define δ0 = ∞ and δK = −∞, so that for every real valued h we can find the unique

index k(h) = k such that δk ≤ h < δk−1. For each h define the ‘threshold boundary value’

bk(h)(h) to be such that the rejection region R(h) =
⋃k(h)−1

j=1 {Zj ≥ bj} ∪ {Zk(h) ≥ bk(h)(h)}

satisfies the level condition

Ph{R(h)} = α . (3.6)

Then {p(h) ≤ α} = R(h) and at an interim look L, given no stopping up to and including

look L,

ǫ(h) =















0 if h ≥ δL

Ph{R(h, L) |ZL = zL} if h < δL

(3.7)

with R(h, L) =
⋃k(h)−1

j=L+1{Zj ≥ bj} ∪ {Zk(h) ≥ bk(h)(h)}.

Once ǫ(h) has been evaluated the test of Hh is accomplished by computing the stage-wise

ordered p-value for the secondary trial,

p(2)(h) = Ph{
L(2)

−1
⋃

j=1

(Z
(2)
j ≥ b

(2)
j ) ∪ (Z

(2)

L(2) ≥ z
(2)

L(2))} , (3.8)

and then rejecting Hh if and only if p(2)(h) ≤ ǫ(h). The 100 × (1 − α)% confidence set

Cα, is then formed by selecting all values of h for which Hh cannot be rejected. Unlike the

non-adaptive case, however, this confidence set may not be an interval. Whereas it is clear

that p(2)(h) increases monotonically with h, it is not possible to claim in general that ǫ(h)
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decreases monotonically with h. Indeed in Figure 1 we have constructed a counterexample

which, while somewhat artificial, nevertheless demonstrates that ǫ(h) need not be monotone.

Note that

p(2)(h) = ǫ(h) (3.9)

could have a unique root even if ǫ(h) fails to be monotone. Conservative coverage of δ will

only arise if equation (3.9) has multiple roots since in that case one would select the root

with the smallest value. We experimented with numerous adaptive rules for sample size re-

estimation for the special case of a single-stage secondary trial and could produce multiple

roots for equation (3.9) only if the re-estimated sample size was drastically reduced to N∗

1 ≤

0.0425N . Although an adaptation of this magnitude would not be acceptable in practice,

we nevertheless constructed a simulation experiment in which sample size reductions of this

order would be encountered so that we might study their impact on coverage. The simulation

experiments discussed in Section 6 demonstrate that even in settings where such drastic

reductions in sample size might occur and cause multiple roots, the coverage properties of

the resulting confidence bounds appear to be exact.

[Figure 1 about here.]

If the adaptations are performed at the penultimate stage, L = K − 1, then ǫ(h) does

decrease monotonically with h. For this important special case, which includes the two-stage

design, R(h, L) = {ZK ≥ bK(h)} and hence for all h < δL and assuming T > L (no stopping

before L)

ǫ(h) = Φ−1

{

zK−1

√
IK−1 − bK(h)

√
IK − (IK − IK−1) · h√

IK − IK−1

}

.

This expression is monotonically decreasing in h because bK(h) is monotonically increasing

in h by its definition (3.6). Thus the unique solution to equation (3.9) can be evaluated by

a simple bisection routine. However for the more general case where L < K − 1 we cannot
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rule out the possibility that p(h) = ǫ(h) has multiple roots. Then the lower bound δ for the

elements of Cα = {p(h) > ǫ(h)} cannot be evaluated by a simple root-finding process but

must instead be evaluated algorithmically as shown in Web Appendix C.

4. Point Estimate for δ

We propose that the lower bound, δ0.5, of the confidence set C0.5 be reported as a point

estimate for δ. In a classical group sequential trial with no adaptation, δ0.5 is the usual

median unbiased point estimate. However, if the trial undergoes an adaptive change, the

point estimate δ0.5 might be smaller than δ slightly more than 50% of the time since the

coverage could, in principle, be conservative. The simulation results in Section 6 show no

conservatism whatsoever up to Monte Carlo accuracy based on 25,000 simulated trials. Thus

for all practical purposes δ0.5 may be treated as the median unbiased estimate of δ for both

adaptive and non-adaptive group sequential trials.

To obtain δ0.5 we proceed as follows.

(1) If the trial has terminated at look T without an adaptive change then δ0.5 is the value

of h that satisfies p(h) = 0.5 where p(h) is evaluated by equation (3.2). This is the usual

median unbiased estimate, based on the stage-wise ordering of the sample space of a

classical group sequential trial.

(2) If a design adaptation occurs at look L we must evaluate ǫ0.5(h), the probability that

a level-0.5 test will reject Hh conditional on ZL = zL and conditional on δ = h. The

computation is similar to that for ǫ(h) discussed in Section 3. We first define the ‘0.5

absorbing constants’ δ1,0.5 ≥ δ2,0.5 ≥ · · · ≥ δK−1,0.5 such that, for any k = 1, 2, . . . K − 1,

Pδk,0.5{
k
⋃

j=1

(Zj ≥ bj)} = 0.5 . (4.10)

We further define δ0,0.5 = ∞ and δK,0.5 = −∞, and bk,0.5(h) for δk,0.5 ≤ h < δk−1,0.5

solving the equation Ph{R0.5(h)} = 0.5 with R0.5(h) = ∪k−1
j=1{Zj ≥ bj}∪{Zk ≥ bk,0.5(h)}.
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Then, using arguments similar to those in Web Appendix A, for δk,0.5 ≤ h < δk−1,0.5

ǫ0.5(h) =















0 if h ≥ δL,0.5

Ph{R0.5(h, L) |ZL = zL } if h < δL,0.5,

with R0.5(h, L) = ∪k−1
j=L+1{Zj ≥ bj} ∪ {Zk ≥ bk,0.5(h)}.

We then set δ0.5 to be the smallest h such that p(2)(h) = ǫ0.5(h) using the algorithm described

in Appendix C.

5. Overall P-values

A family of hypothesis tests is said to be nested if rejection of any level-u test in the family

implies rejection of all level-u′ tests, where u′ > u. An overall p-value q for an adaptive trial

is obtained by rejecting H0: δ ≤ 0 in a sequence of nested tests with progressively decreasing

significance levels 0 < u < 1 until level q is reached such that, for all u ≤ q, H0 can no longer

be rejected. We now describe how such an overall p-value may be computed.

Suppose the primary trial undergoes an adaptive change at look L. Let ǫu denote the

probability of rejecting H0: δ ≤ 0 at level u were the primary trial to continue without

modification, conditional on Zj = zj, j ≤ L, and conditional on δ = 0. Since H0 is rejected

at level u if and only if the corresponding stage-wise adjusted p-value is less than or equal

to u we have, more formally,

ǫu = P0{ p(0) ≤ u |Zj = zj, j ≤ L } (5.11)

where p(0) is defined by equation (3.2) with h = 0. The following result, combined with the

recursive integration algorithm of Armitage et al. (1969) is used to compute ǫu.

Theorem 5.1: Define the sequence of constants α0 < α1 < · · · < αK such that α0 = 0,

αK = 1 and for k = 1, 2, . . . , K − 1, αk = P0{∪k
j=1(Zj ≥ bj)}. For any 0 < u < 1 find

the corresponding index ku = k such that αk−1 < u ≤ αk. Define the ‘threshold boundary’
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bk,u such that the rejection region Ru = ∪ku−1
j=1 {Zj ≥ bj} ∪ {Zku

≥ bku,u}) satisfies the level

condition P0(Ru) = u. Then {p(0) ≤ u} = Ru and at an interim look L < T

ǫu =















0 if u ≤ αL

P0( Ru,L |ZL = zL) if u < αL .

(5.12)

where Ru,L = ∪ku−1
j=L+1(Zj ≥ bj) ∪ (Zku

≥ bku,u).

The proof is given in Web Appendix B and follows along lines used to prove Theorem 1.

For the secondary trial we use the p-value p(2)(0) for H0 based on the stage wise ordering of

the secondary trial as defined in (3.8) for h = 0. The overall p-value is obtained by performing

a sequence of tests on progressively decreasing values of u until we find

q = inf{u: p(2)(0) ≤ ǫu} . (5.13)

By its definition, bk,u is monotonically increasing in u, and hence ǫu is monotonically increas-

ing in u. Therefore the tests are nested, and q is the unique root of the equation p(2)(0) = ǫu.

6. Simulation Study

In this section we demonstrate by simulation experiments that our extension of the Tsi-

atis, Rosner, Mehta (1984) stage-wise adjusted confidence interval (SWACI) provides exact

coverage and median unbiased point estimates in adaptive group sequential trials. We also

compare the SWACI method with the RCI method proposed by Mehta et al. (2006). We

have simulated adaptive group sequential trials under many different scenarios, all leading to

identical conclusions about the coverage properties of the two methods. Here we present the

results for one specific design in which we test the null hypothesis δ ≤ 0 against the one-sided

alternative δ > 0, where δ is the mean difference of two normally distributed populations

with a known standard deviation σ = 1. Results for three other scenarios are available in the

“Supplementary Materials” section of this paper which may be accessed from the Biometrics

http://website www.biometrics.tibs.org.
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The First Simulation Experiment. In this simulation experiment the primary trial is

designed for up to four equally spaced looks with the O’Brien and Fleming type spending

function of Lan and DeMets (1983), denoted LD(OF). The total sample size of N = 480

patients (both arms) provides slightly over 90% power to detect δ = 0.3 with a one-sided

level-0.025 group sequential test. At look 1, with 120 subjects enrolled, the pre-planned total

sample size N is changed to N∗ by the following conditional power rules: (1) If δ̂ ≤ 0 then

N∗ = N . (2) If δ̂ > 0, determine the sample size, say m, such that the conditional power

evaluated at δ̂ is 90%, and set N∗ = max{122, min(m, 1000)}. Note that N∗ can be smaller

than the initial maximum sample size N . Once N∗ has been computed, the number of looks

for the secondary trial, K(2), is chosen dynamically to be the largest possible integer such

that N∗/K(2) ≤ 120. This time we use stopping boundaries derived from the Pocock type

spending function of Lan and DeMets (1983), denoted LD(PK), so as to have a good chance

of early rejection of H0. The type I error of the secondary trial will equal the conditional

type I error rate obtained at look 1 of the primary trial.

[Table 1 about here.]

This simulation experiment was purposely selected to verify the properties of the resulting

confidence bounds and point estimates in the unfavorable setting where monotonicity of ǫ(h)

cannot be assured. For example, Figure 1 demonstrates that ǫ(h) is non-monotonic at the

specific sample point z1 = 4 in the primary trial. We pointed out at the end of Section 3.2

that even when ǫ(h) is non-monotonic the solution to ǫ(h) = p(h) won’t necessarily have

multiple roots. Indeed we were able to obtain multiple roots by empirical investigation only

in the extreme case where the secondary trial had a single stage and the total sample

size N∗ after the adaptation was reduced drastically relative to N . The current simulation

experiment has been constructed precisely to encourage such drastic sample size reductions

and determine their impact on the properties of the confidence bounds and point estimates.
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The simulation results are displayed in Table 1. Each entry in the tables is based on 25,000

simulations with σ = 1 and the five different mean differences δ = −0.1, 0, 0.15, 0.3, 0.5.

With 25,000 simulations the standard error of the lower 97.5% confidence bound is 0.000975

and the standard error of the lower 50% confidence bound is 0.003. Columns 3 and 4 of

Table 1 display the actual proportion of times in 25,000 simulated trials that the lower

97.5% confidence bounds, based respectively on the SWACI and RCI methods, covered the

corresponding true values of δ. Columns 5 and 6 display the medians of the 25,000 lower 50%

confidence bounds, based respectively on the SWACI and RCI methods. It is seen that even

in this extreme setting the lower confidence bounds appear to have the desired coverage

properties for every value of δ. Hence, the SWACI method produces exact coverage and

median unbiased point estimates, up to Monte Carlo accuracy. In contrast the RCI method

only appears to offer exact coverage and a median unbiased point estimate when δ = 0, but

offers conservative coverage and negatively biased point estimates otherwise. Moreover the

extent of the conservatism appears to increase with increasing values of δ. We have found

similar results in all other simulations displayed in the Supplementary Materials section on

the Biometrics website.

7. Example: Deep Brain Stimulation for Parkinson’s Disease

We illustrate our estimation methods using a (slightly modified) example discussed in Müller

and Schäfer (2001), Müller and Schäfer consider a clinical trial for comparing deep brain

stimulation to conventional treatment for Parkinson’s disease. The main outcome variable

was the quality of life as measured by the 39-item Parkinson’s Disease Questionnaire (the

PDQ-39). Since no prior PDQ-39 data on deep brain stimulation were available, the study

was planned based on the data from the pallidotomy trial of Martinez-Martin (2000). This

lead to the assumption of an improvement by 6 points in PDQ-39 for the treatment arm

relative to the control arm. The standard deviation, also subject to considerable uncertainty,
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was assumed to be 17. We shall assume here that the trial was initially planned as a three-

look group sequential design at one-sided level 0.05 to test H0: δ = 0. The sample size

calculation is for 90% power to detect δ = 6 when the standard deviation is σ = 17. Using a

γ(−4) error spending function (Hwang, Shih, and DeCani, 1990) we obtain an initial design

with three equally spaced looks having cumulative enrollments of n
(1)
1 = 94, n

(1)
2 = 188,

and n
(1)
3 = 282 subjects, respectively. The corresponding Wald stopping boundaries are

b
(1)
1 = 2.794, b

(1)
2 = 2.289, and b

(1)
3 = 1.680. To illustrate our estimation procedure we

implement a hypothetical (but realistic) scenario in which the first interim analysis is followed

by an adaptive change to the design. Suppose that at the first interim analysis, when 94

subjects have been evaluated, the estimate of δ is δ̂(1) = 4.5 with estimated standard deviation

σ̂ = 20. At this point it is decided to increase the sample size since, if in truth δ = 4.5 and

σ = 20, the conditional power is only about 60%, whereas we would prefer to proceed with

at least 80% conditional power. The conditional rejection probability for the remainder of

the trial is 0.1033. Therefore we may construct any suitable secondary trial to take over from

the primary trial at the present look, as long as the significance level of the secondary trial

is ǫ = 0.1033.

How should the secondary trial be designed? The real benefit of an adaptive trial lies in

the fact that all aspects of the original design can be re-visited at an interim look. All the

observed efficacy and safety data, rather than just the summary statistics δ̂ and σ̂, could be

reviewed alongside any new external information that may also become available. Suitable

design changes can then be made to the primary trial. In the present case we will assume

that as a result of this type of review the investigators have determined that δ = 5 rather

than δ = 6 would still constitute a clinically meaningful treatment benefit. Suppose then that

the sponsor decides to re-design the study under the now more accurate assumption that

δ = 5 and σ = 20. To this end they adopt a three-look secondary trial with γ(−2) spending
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function and sample sizes n
(2)
1 = 100, n

(2)
2 = 200 and n

(2)
3 = 300, thereby achieving slightly

over 80% power. The corresponding stopping boundaries are b
(2)
1 = 2.162, b

(2)
2 = 1.781 and

b
(2)
3 = 1.351, respectively. The γ(−2) spending function was selected because, under the new

alternative hypothesis δ = 5, it provides a reasonable chance of terminating for efficacy at

the first or second interim looks, namely 18% and 33%, respectively.

Suppose that the secondary trial terminates at the second look after the recruitment of

n
(2)
2 = 200 new subjects where a treatment effect of δ̂

(2)
2 = 6.6 and a standard deviation

of σ̂
(2)
2 = 19.5 was observed. This leads to z

(2)
2 = (6.6

√
300)/(2 × 19.5)) = 2.393. Since z

(2)
2

exceeds the critical value b
(2)
2 = 1.781, the trial can be stopped with rejection of the null

hypothesis δ = 0. Applying the estimation methods discussed in Sections 3 and 4 the SWACI

one sided 95% confidence interval for δ is (1.332,∞), the median unbiased point estimate is

5.22 and the overall p-value is 0.009. In contrast the RCI method produces a conservative

95% confidence interval [1.189,∞), a negatively biased point estimate 4.32 and a conservative

overall p-value 0.014. The naive group sequential point estimate, obtained by computing a

50% SWACI for the data from the secondary trial alone, is 6.23 thereby exhibiting a severe

positive bias.

8. Extension to trials with futility boundaries or two-sided hypotheses

8.1 One-sided group sequential tests with futility boundaries

Group sequential designs may have boundaries for an early acceptance of H0. Many different

such criteria are available. All these criteria imply boundaries aj, j = 1, . . . , K, such that

the trial is stopped at stage j with acceptance of H0 if Zj < aj. Without design adaptations

the p-value based on the stage-wise ordering (Tsiatis et al., 1984) is given by

p(h) = Ph(∪T−1
j=1 {Zj ≥ bj, Zi ≥ ai, for all i < j}∪{ZT ≥ zT , Zi ≥ ai, for all i < T}) .(8.14)
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As before, the stage-wise confidence bound is the unique solution of p(h) = α. In the case of

design adaptations we can use the conditional rejection probabilities (3.4) with the p-value

defined in (8.14) and stage-wise p-values p(2)(h) of the secondary trial that may also have

futility boundaries. As before, the smallest solution of the equation p(2)(h) = ǫ(h) gives a

lower confidence bound at level 1 − α.

8.2 Two-sided group sequential trials

We consider now a two-sided group sequential trial at level 2α where we reject H0 : µ = 0

at stage j = 1, . . . , K if |Zj| ≥ bj. As was noted by Müller and Schäfer (2001), a direct

application of their principle to two-sided hypothesis can be problematic. The reason is

that in clinical trials the rejection of H0 is usually insufficient and requires inference on

the direction in which H0 is violated. In classical two-sided group sequential tests (without

adaptations) this is achieved by the following rule: reject H0,− : µ ≤ 0 at stage j ≤ K if

|Zi| < bi for all i < j, and Zj ≥ bj, similarly, reject H0,+ : µ ≥ 0 at stage j if |Zi| < bi for all

i < j and −Zj ≥ bj. In other words, we implicitly apply two one-sided group sequential tests

each at level α: the test for H0,− is with Wald test statistics Zj, rejection boundaries bj and

acceptance boundaries aj = −bj, and the test for H0,+ has the same boundaries but the Wald

test statistics −Zj. In order to preserve the directional inferences, Müller and Schäfer (2001)

have suggested applying their principle individually to each of these two group sequential

tests. Computing (as outlined in the previous subsection) the stage wise lower confidence

bound for both group sequential tests gives lower level 1 − α confidence bounds for the

parameters δ and −δ, respectively, which automatically build a two-sided confidence interval

at level 1− 2α. Trials with asymmetric lower and upper rejection boundaries can be treated

in exactly the same way.
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9. Conclusions and further Extensions

The estimation approach suggested in this paper extends the hypothesis testing method of

Müller and Schäfer (2001) to the problem of parameter estimation. We can claim theoretically

that the coverage of our confidence interval is exact for two-stage designs, and conservative

in general. Moreover we have provided compelling evidence, based on large-scale simulations,

that the extent of the conservatism is negligible. No such procedure, which also extends to

providing median unbiased point estimates, has previously been available.

While we have only considered two arm clinical trials in this paper, there is currently

a great deal of interest in applying the adaptive methodology to the multi-arm setting in

which m > 2 treatment arms are each compared to a single control arm. A straightforward

approach is to plan m group sequential tests for the m treatment-control comparisons, each

at the Bonferroni adjusted level α/m. Our method would then provide simultaneous lower

confidence bounds for treatment effect δ1, δ2, . . . , δm.

10. Supplementary Material

Web Appendix A and B with the proofs of Theorems 3.1 and 5.1, Web Appendix C with

the algorithm for the computation of the adaptive stage-wise lower confidence bound, and

Web Appendix D with additional simulation results may be accessed at the Biometrics web-

site http://www.biometrics.tibs.org. Software support is provided through the East (2007)

package.
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Figure 1. An example of non-monotonicity of the conditional rejection probability ǫ(h)

as function in h when using the SWACI. The figure is for an O’Brien and Fleming design

with four equally spaced looks where ǫ(h) is computed at look 1 with z1 = 4 being observed.

The vertical dashed lines mark the locations of the α-absorbing constants δ1 ≥ δ2 ≥ δ3.
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Table 1

Results of the first simulation experiment: The primary trial has 4 equally spaced looks, a maximum sample size of
480 patients and rejection boundaries derived from the O’Brien and Fleming type spending function of Lan and

DeMets (1983). The maximum sample size of the secondary trial is reassessed based on conditional power
arguments. The rejection boundaries of the secondary trial are derived from the Pocock type spending function of Lan
and DeMets (1983). The number of looks of the secondary trial is chosen such that the number of patients recruited
between the successive stages is not more than 120. The table gives the coverage probabilities of the one-sided 95%

confidence interval and the median of the point estimate. The results are based on 25000 simulation runs.

Group
Sequential True Actual Coverage

Design δ of 97.5% CI Median of δ0.5

SWACI RCI SWACI RCI

LD(OBF)–LD(PK) -0.1 0.9752 0.9852 -0.0991 -0.1236
LD(OBF)–LD(PK) 0.0 0.9742 0.9758 -0.0003 -0.0221
LD(OBF)–LD(PK) 0.15 0.9746 0.9819 0.1495 0.1362
LD(OBF)–LD(PK) 0.3 0.9754 0.9803 0.2985 0.2555
LD(OBF)–LD(PK) 0.5 0.9767 0.9841 0.4965 0.4765


